

POLITECNICO MILANO 1863

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

Fast-gated 16×16 SPAD array with on-chip 6 ps TDCs for non-line-of-sight imaging

Simone Riccardo, Enrico Conca, Vincenzo Sesta, Alberto Tosi

International SPAD Sensor Workshop 2022

June 14th, 2022

Outline

Non-line-of-sight (NLOS) imaging

- 1. Working principle
- 2. System requirements
- 3. State-of-the-art

16 × 16 SPAD array architecture

- 1. SPAD performance
- 2. Time-gated frontend
- 3. Resource sharing
- 4. Time-to-digital converters (TDCs)

Camera overview

Characterization results

- 1. IRF
- 2. Time-gating
- 3. Conversion linearity

Conclusions

INFORMAZIONE E BIOINGEGNERIA

Non-line-of-sight imaging

Reconstruction of hidden objects by collecting light that diffuses multiple times

Examples of applications:

- Security and defense
- Search and rescue ۲
- Monitoring hazardous environments ۲
- Autonomous vehicles and ADAS
- Remote sensing

POLITECNICO MILANO 1863

DIPARTIMENTO DI ELETTRONICA INFORMAZIONE E BIOINGEGNERIA

Time-of-flight NLOS imaging system

- Picosecond pulsed laser → illuminates a relay wall
- Time-resolved detector → acquires return light
- **Time-of-flight processing unit** → time stamps single-photons
- 2-axis scanning system → increases image resolution
- Workstation → runs the reconstruction algorithms

INDIRECT LIGHT PATH

Detector requirements

- Multiple scattering events → faint 3rd bounce signal → single-photon sensitivity
- Undesired 1st bounce reflections → time-domain filtering → time-gated detector

NLOS imaging requires SPAD-based sensors

POLITECNICO MILANO 1863 DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

State-of-the-art

Fast-gated 16 \times 1 SPAD array

External TCSPC unit (PicoQuant HydraHarp 400)

- → Reaches up to 5 fps, 0.5 MP resolution
- Hardware limited to few pixels, 8 TCSPC channels

J. H. Nam, E. Brandt, S. Bauer, X. Liu, M. Renna, A. Tosi, E. Sifakis, and A. Velten,

"Low-latency time-of-flight non-line-of-sight imaging at 5 frames per Second," Nature Communications, vol. 12, no. 1, 2021.

NLOS at video rates -> Design of a new fully-integrated 16 × 16 SPAD array:

- Parallel acquisition: multi-pixel sensor
- Narrow IRF: few tens of ps (FWHM)
- Fast-gating: < 1 ns gate-ON transition
- SWaP-C optimized: integrated TCSPC processing

16 × 16 SPAD array: fabrication technology

Narrow IRF + High PDE → 160 nm BCD technology by STMicroelectronics

M. Sanzaro, P. Gattari, F. Villa, A. Tosi, G. Croce, and F. Zappa, "Single-photon avalanche diodes in a 0.16 µm BCD technology with sharp timing response and redenhanced sensitivity," *IEEE Journal of Selected Topics in Quantum Electronics*, vol. 24, no. 2, pp. 1–9, 2018.

POLITECNICO MILANO 1863 DIPARTIMENTO DI ELETTRONICA.

INFORMAZIONE E BIOINGEGNERIA

16 × 16 SPAD array: fast-gated frontend

- \rightarrow M1 and M2 programmable to sense avalanches and tune the activation time
- \rightarrow M3 for level translation from 5 V (GATE) to 1.8 V (fast comparator)

- \rightarrow Differential sensing to reject feedthrough pulses
- → Low threshold for low timing jitter

Activation time < 400 ps

16 × 16 SPAD array: differential sensing approaches

16 × 16 SPAD array: microcell circuitry

→ 4 SPADs + low-threshold comparators Low-jitter avalanche sensing Optimizes area and power + fast quenching

→ Identification logic

Encodes the firing SPAD address (SPAD ID)

\rightarrow Hold-off logic

Forces 30 ns dead-time to reduce afterpulsing

ightarrow 1.8 V to 5 V level shifter

Maximizes V_{EX}, hence PDE

16 × 16 SPAD array: resource sharing

16 × 16 SPAD array: TDCs and output serializers

16 TDCs:

- START and STOP interpolators → sliding scale → improved linearity
- 10-bit counter @ 420 MHz \rightarrow FSR = 2.45 μ s
- Coarse multiphase interpolator → conversion time < 50 ns
- Single-stage Vernier fine interpolator → LSB = 6 ps

16 Serializers:

- 18-bit dual-channel @ 200 MHz → up to **10 Mevents/s** per TDC
- Event-driven readout → Time-Tagged Time-Resolved (TTTR) operation
- **Pipelined architecture** → conversion during data-transfers

Camera overview

IC:

- 4.8 mm x 4.8 mm, PAD-limited
- In-pixel decoupling capacitors + deep trench isolation
- 32 μ m squared SPADs @ 100 μ m pitch \rightarrow Fill-factor = 9.6%

Camera:

- **Chip-carrier board** \rightarrow hosts the wire-bonded IC
- Power board → power management + signal conditioning
- FPGA board → TCSPC processing + USB 3.0 interface

4.8 mm

Characterization results: instrument response function

→ Values obtained by illuminating the array with a 10 ps 820 nm pulsed laser running at 100 kHz

POLITECNICO MILANO 1863 DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

Characterization results: gating performance

> Values obtained scanning a 52 ps (FWHM) 850 nm pulsed laser at 50 ps steps across a 30 ns gate window at 1 MHz repetition rate

Characterization results: gating performance

> Values obtained scanning a 52 ps (FWHM) 850 nm pulsed laser at 50 ps steps across a 30 ns gate window at 1 MHz repetition rate

Characterization results: conversion linearity

POLITECNICO MILANO 1863 DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

Characterization results: dark count rate

Median DCR = 1 kcps @ operating temperature (~ 45° C)

→ Temperature increase due to **500 mW power consumption**

POLITECNICO MILANO 1863 DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEONERIA

Conclusions

High-performance NLOS SPAD array:

- 16 × 16 pixels
- Sub-ns gating
- State-of-the-art IRF:
 FWHM < 75 ps, 62 ps on average
- 16 integrated high-resolution TDCs

Integrated in a portable camera:

- 10 × 7 × 5 cm³
- USB 3.0 connection + single 5 V power supply
- Up to 160 Mevents/s sustained throughput
- SM1 or C-mount thread for filters and lenses

→ NLOS measurements ongoing at the University of Wisconsin-Madison

This work was partially supported by "DARPA REVEAL: Scene Recovery using an extended Plenoptic Function", grant HR0011-16-C-0025

POLITECNICO MILANO 1863 DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

POLITECNICO MILANO 1863

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

Fast-gated 16×16 SPAD array with on-chip 6 ps TDCs for non-line-of-sight imaging

Simone Riccardo, Enrico Conca, Vincenzo Sesta, Alberto Tosi

International SPAD Sensor Workshop 2022

June 14th, 2022